Unleashing the power of Schrijver's permanental inequality with the help of the Bethe Approximation

نویسنده

  • Leonid Gurvits
چکیده

Let A ∈ Ωn be doubly-stochastic n × n matrix. Alexander Schrijver proved in 1998 the following remarkable inequality per(Ã) ≥ ∏ 1≤i,j≤n (1−A(i, j)); Ã(i, j) =: A(i, j)(1−A(i, j)), 1 ≤ i, j ≤ n (1) We prove in this paper the following generalization (or just clever reformulation) of (1): For all pairs of n × n matrices (P,Q), where P is nonnegative and Q is doublystochastic log(per(P )) ≥ ∑ 1≤i,j≤n log(1−Q(i, j))(1−Q(i, j))− ∑ 1≤i,j≤n Q(i, j) log ( Q(i, j) P (i, j) ) (2) The main co rollary of (2) is the following inequality for doubly-stochastic matrices: per(A) F (A) ≥ 1;F (A) =: ∏ 1≤i,j≤n (1−A(i, j))1−A(i,j) . We use this inequality to prove Friedland’s conjecture on monomerdimer entropy, so called Asymptotic Lower Matching Conjecture We present explicit doubly-stochastic n×n matrices A with the ratio per(A) F (A) = √ 2 n and conjecture that max A∈Ωn per(A) F (A) ≈ (√ 2 )n . If true, it would imply a deterministic poly-time algorithm to approximate the permanent of n× n nonnegative matrices within the relative factor (√ 2 )n . ∗[email protected]. Los Alamos National Laboratory, Los Alamos, NM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unharnessing the power of Schrijver's permanental inequality

Let A ∈ Ωn be doubly-stochastic n × n matrix. Alexander Schrijver proved in 1998 the following remarkable inequality per(Ã) ≥ ∏ 1≤i,j≤n (1−A(i, j)); Ã(i, j) =: A(i, j)(1−A(i, j)), 1 ≤ i, j ≤ n (1) We prove in this paper the following generalization (or just clever reformulation) of (1): For all pairs of n × n matrices (P,Q), where P is nonnegative and Q is doublystochastic log(per(P )) ≥ ∑ 1≤i,...

متن کامل

Quantum mechanical proton range in human body

Introduction: Proton therapy delivers radiation to tumor tissue in a much more confined way than conventional photon therapy thus allowing the radiation oncologist to use a greater dose while still minimizing side.   Materials and Methods: protons release most of their energy within the tumor region. As a result, the treating physician can potentially give an...

متن کامل

Approximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces

This paper introduces an implicit scheme for a   continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a   sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup.   The main result is to    prove the strong convergence of the proposed implicit scheme to the unique solutio...

متن کامل

Deriving Fuzzy Inequalities Using Discrete Approximation of Fuzzy Numbers

Most of the researches in the domain of fuzzy number comparisons serve the fuzzy number ordering purpose. For making a comparison between two fuzzy numbers, beyond the determination of their order, it is needed to derive the magnitude of their order. In line with this idea, the concept of inequality is no longer crisp however it becomes fuzzy in the sense of representing partial belonging or de...

متن کامل

(m1,m2)-Convexity and Some New Hermite-Hadamard Type Inequalities

In this manuscript, a new class of extended (m1,m2)-convex and concave functions is introduced. After some properties of (m1,m2)-convex functions have been given, the inequalities obtained with Hölder and Hölder-İşcan and power-mean and improwed power-mean integral inequalities have been compared and it has been shown that the inequality with Hölder-İşcan inequality gives a better approach than...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011